

Teledyne Update Motor-Operated Valve Users' Group Annual Meeting

January 7-10,2007 Sheraton Sand Key Resort Clearwater Beach, Florida

Location

- Marion, Massachusetts
- Business Focus: Technical Services and Strain Gages Based Sensors for Critical Mechanical Systems.
 - Valve Testing Systems & Services
 - Torque Sensors
 - Load Cells
 - Signal Conditioning & Data Acquisition
- Markets
 - Power Generation Plants
 - Industrial Process Control
 - Automotive R & D Testing
 - Manufacturing & Assembly Tools

2006 HIGHLIGHTS

- Delivered the first 20 Quiklook II systems to Electricite de France
- Translated Quiklook software into French language.
- Implemented Redirector process at EDF for controlling Quiklook configuration files and MOV design data.
- Validated and released version 2006.269 of QLII software
- Hosted 1st Quiklook User Group meeting in Marion, MA
- Validated the new X-60 fast setting QSS epoxy
- Redesigned Spring Pack Measurement Device (metal plunger)
- Upgrade package for existing spring pack calibration devices using Quiklook software
- Introduced new line of compact current probes (no switches)
- Improved headphone communications on QLII systems

2006 HIGHLIGHTS

Design/Test Software Improvements

- Added Stem Nut Wear Methodology
- Added ComED Voltage Drop Methodology
- Added Pressure Locking Methodology for Flex Wedge Gate Valves. Similar to ComED methodology implemented in WOG Software "Preslok"
- Modifications to existing BWROG/DC Methodology
 - Added Short Stroke Capability
 - Added Functional Actuator Capability (FAC) Iteration
- Added What-If Capability to margin analysis

2007 PREVIEWS

- Enhanced web site: <u>www.valvetest.com</u>
- Customer training sessions to be held in Marion , MA
- Provide built in WIFI for Quiklook II
- QLII software enhancements and validated release
- Quiklook user group meeting (2 full days) to be held in August
- AOV version for EDF
- Refinement of Redirector process at EDF
- Design Software Improvement SQL Server Database
- Design Software Improvement Margin Reconciliation
- Design Software Improvement Standardization
- Software V&V Documentation Standardization

SOFTWARE UPDATE

Michael Richard

QUIKLOOK

- Version 2006.269
 - Released September 2006
 - Spring Pack Calibration Report
 - Default Setup is customizable by the user
 - Added Motor Power Calculation using Line voltages

Spring Pack Calibration

Hardware

- Utilizes Existing Spring Pack Test Equipment
- Adapter Cables supplied to connect existing load cells to QUIKLOOK
- Replacement LVDT and cable
- Software
 - Add in Report to QUIKLOOK
 - Uses QUIKLOOK to Acquire Test Data
 - Report output includes
 - Calibration Certificate
 - Plot of Generic and Calibration Data
 - Sensitivity Equation

		JERIII	ICATE OF	CALIB	KATIC				
Test: 06354002					Cal D	ate: <u>12/20/2006</u>	16:48:14		
Valve ID): <u>N/A</u>		Spring Pack: 0101-091			SMB Type: 000			
Work Order #	#: <u>00265490</u>		S. P. Serial #: <u>N/</u>	4	Mea	Measured X-Dim: 0			
			CALIBRATION S	TANDARI)				
Manufacturer Micro Measurements Revere			Model No.	Seria	al No.	Calibration	Calibratio		
			850	MG	2445	12/15/2006 12/18/2006	12/15/200		
			92	18	92		12/17/200		
	Teledyne		160026	10	965	11/22/2006	11/22/200		
	Nominal	Nominal	Nominal	Average	Measured	Measured	Measured		
Setting	Displacement	Torque	Displacement	Torque	Torque	Torque	Torque		
					1	2	3		
1.00	0.093	23.0	0.020	15.61	16.89	16.03	13.91		
1.50	0.129	29.6	0.060	23.32	24.21	23.76	21.99		
2.00	0.165	36.2	0.100	30.77	31.00	30.34	30.96		
2.50	0.201	42.8	0.140	38.82	39.01	38.29	39.16		
3.00	0.237	49.4	0.180	45.70	40.00	44.40	47.05		
3.50	0.273	00.0	0.220	02.78	50.05	50.00	00.00		
CER	TIFIED BY: Teo Eng	chnician: gineer:			Da Da	le:			
		-	TELEDYNI Test Services A Teledyne Tech	INSTRUM					

Rev: 030405

Spring Pack Calibration

Demonstration

We will be doing demos in our booth using a converted Spring Pack Test System

OUIKLOOK Default Setup Default Configuration Setup is customizable by the user

User may customize the Default Setup used to configure QUIKLOOK for acquisition by saving a Default.Tag file with the desired settings.

QUIKLOOK Default Setup

Configure 16 Channel Quiklook Test

Load Valve Save Valve Default Valve Channels Return Help

Primary Name	3-1301-4	Secondary Name S2
Description	VOTES Test Converte	d to QUIKLOOK Format

Channel Assignments

Ch	Name	Units	Type	Range	Sensitivity	Offset	Save
1	Aux Sens	(lbs)	Differential	+-10 Vdc	1.00000 E+00	-1.02192 E+05	×
2	Referenc	Volt	Differential	+-10 Vdc	1.00000 E+00	-1.94100 E+00	×
3	Raw Moto	(amps)	Differential	+-10 Vdc	1.00000 E+00	-8.86450 E+01	×
4	17-2	(amps)	Differential	+-10 Vdc	1.00000 E+00	-7.55300 E+00	×
5	LITES 4&	(amps)	Differential	+-10 Vdc	1.00000 E+00	-7.58700 E+00	×
6	11C	(amps)	Differential	+-10 Vdc	1.00000 E+00	-5.98000 E-01	×
7	18-13	(amps)	Differential	+-10 Vdc	1.00000 E+00	-1.00000 E+01	×
8	Spare	(none)	Differential	+-10 Vdc	1.00000 E+00	0.00000 E+00	
9			Differential	+-10 Vdc	0.00000 E+00	0.00000 E+00	
10			Differential	+-10 Vdc	0.00000 E+00	0.00000 E+00	
11			Differential	+-10 Vdc	0.00000 E+00	0.00000 E+00	
12			Differential	+-10 Vdc	0.00000 E+00	0.00000 E+00	
13			Differential	+-10 Vdc	0.00000 E+00	0.00000 E+00	
14			Differential	+-10 Vdc	0.00000 E+00	0.00000 E+00	
15			Differential	+-10 Vdc	0.00000 E+00	0.00000 E+00	
16			Differential	+-10 Vdc	0.00000 E+00	0.00000 E+00	

	C 8 Channel Sentry	C 8 Channel Quiklook	
Channel Data	C 16 Channel Sentry	• 16 Channel Quiklook	

Motor Power

 QUIKLOOK can calculate electrical power based on either measured line voltages or measured phase voltages, as follows:

 Phase Voltages – Channels Va, Ia, Vb, Ib, Vc, Ic are recorded. The power calculations are performed using the phase voltages and currents. The phase voltages are measured referenced to ground.

Line Voltages – Channels Vab, Ia, Vbc, Ib, Vca, Ic are recorded. The power calculations are performed using the phase voltages and currents. The line voltages are a phaseto-phase measurement.

	Bienv	enue Michael	Richard
	Palier:	CPX	-
Données Ingéniérie	Site:	DTG	•
	Tranche:	3	•
Liste des Robinets	Robinet:	RIS021VP	Liste des configurations
	• test	Mécanique	13/06/06 09:53
Sensibilité	oe de]	Electrique	(pas de configuration)
	ι <u>ν</u>	+ Electrique	(pas de configuration)

		Bienv	enue Michael	Richard	Arréter
		Palier:	CPX		
	Lopie USB	Site:	DTG	•	
	7	Tranche:	3	•	
	Mise à jour configurations	Robinet:	RIS021VP	▼ Liste d	es configurations
2	Sensibilité	ype de Test	Mécanique Electrique M <u>é</u> canique	13/06/06 09:9 (pas de confi (pas de confi	53 guration) guration)
	Ir	tervenants:	+ Electrique		
	<u>Acquisition</u>		09/01/07 11:2	7	Analyse
E-					

Stem Nut Wear Implementation

Existing Design Inputs:

- Stem Geometry (Diameter, Pitch, Lead, Thread Type, Thread Angle)
- Stem Speed (Motor RPM, Overall Gear Ratio)
- Stem Travel

Additional Design Inputs:

- Stem Nut Safety Factor
- Stem Nut Engagement Length
- Stem Nut Total Thrust
- Stem Nut Material Yield Strength
- Stem Nut Backlash
- Operator Strokes / Year

Stem Nut Wear Implementation

- **Design Outputs:**
- Maximum Stem Thread Transition Time
- Stem Revolutions / Stroke
- Stem Revolutions / Year

Test Inputs:

- Actual Stem Thread Transition Time Test Outputs:
- Available Safety Factor
- Stem Thread Transition Time Flag

ComED Voltage Drop Implementation Existing Design Inputs:

- Cable Resistance
- Cable Reactance
- Thermal Overload Heater Resistance
- Voltages at MCC (close/open)
- Motor Curve

Additional Lookup Parameters:

- ComED Power Factor
- ComED Correlation Coefficient Slope
- ComED Correlation Coefficient Intercept

ComED Voltage Drop Implementation Temporary Calculation Parameters:

- Phase Angle (Theta)
- Motor Terminal Phase Voltages using:
 - Alpha
 - Beta
 - Gamma

Design Outputs:

- Voltages at Motor (close/open)
- Voltage Ratios (Voltage at Motor / Voltage Rated)

Pressure Locking Implementation Flex Wedge Gate Valves

Existing Design Inputs:

- Stem Diameter at packing
- Mean Seat Diameter
- Open Valve Factor
- Gate Wedge Angle
- Pullout Thrust Measurement Uncertainty (%Reading)

Pressure Locking Implementation Flex Wedge Gate Valves

Additional Design Inputs:

- Calculation Flag
- Bonnet Pressure
- Upstream Pressure
- Downstream Pressure
- Disc Thickness
- Effective Hub Radius
- Hub Length
- Disc Material Modulus of Elasticity
- Disc Material Poisson's Ratio
- Pullout Thrust
- Recommended Margin

Pressure Locking Implementation Flex Wedge Gate Valves

Design Outputs:

- Pressure Locking Thrust
- Pressure Locking Required Thrust Margin
- Pressure Locking Available Thrust Margin
- Pressure Locking Margin Flag

Exit	If Margin Analysis for MO-3-44A-3201B						
	Current PVT	<u>Calculat</u>	ed PVT	<u>Test Data</u>	New	Origina	l.
So C	hedule Risk Interval utage L 10 🗸	Max Interval	Margin	Torque @TST	62	62	(ft-lb
	(years) —	(years)		Pullout Torque	34	34	(ft-lb
Safe	ty Eurotion: CLOSE	Class Car		Run Torque (C)	14	14	(ft-lb
3416		Close Col		Run Torque (0)	9	9	(ft-lb
Eq.	Parameter	Close	Open	Thrust@ISI	4506	4506	(Ibs
<u></u>	S1: Thrust @TST Setup Margin (close)	17.7	(Pullout Thrust	5595	2022	(IDS
<u>S2</u>	S2: Max Thrust Setup Margin (close)	26.4		Bup Thrust (C)	2003	2003 690	(IDS (IDS
<u></u>	S3: Torque @TST Setup Margin (close)	32.6		Bun Thrust (0)	668	668	(Ibs
<u>S4</u>	S4: Max Torque Setup Margin (close)	16.9			000		(100
	SS: MLAT Pullout Torque Margin (open)		97.2				
<u>- 30</u> 67	S6. Pullout Thrust Margin (open)	 EA	96.1	Parameters		Close	Oper
 	S8: Running Load Margin (close)		55.5	Valve Eactor Ca	- anahilitu	0 505	N/A
59	S9: Torque Setun Margin (close)	-16		Current As-L	eft COF	0.129	0.11
\$10	S10: MLAT Max Thrust Setup Margin (close)	9		MAX Desi	gn COF	0.291	0.54
S21	S21: EPRI Open Unseating Margin	-	30	OverThru	ust COF	0.053	(Thresho
				UnderThru	ust COF	0.171	(Thresho
				MIAT OWNER THE	UN COF		(There also